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Supplemental Information Text: 

Methods: 

Reagents: PND1184, Nocodazole, y27632, NSC23766, Mitomycin C, Human Transferrin, (3-

Aminopropyl)trimethoxysilane were purchased from Sigma-Aldrich (Saint Louis, MO), Glutaraldehyde 

purchased from Electron Microscopy Sciences (Hatfield, PA), BD Collagen I, rat tail was purchased from 

BD Biosciences (San Jose, CA). 1X PBS, 1X DMEM, Fetal Bovine Serum, l-glutamine, Penicillin-

Streptomycin, Trypsin EDTA were purchased from Corning Inc. (Tewksbury, MA), TBS, MnCl, NaOH 

were purchased from Fisher Scientific (Hampton, NH), Ro-3306 was purchased from Cayman Chemical 

(Ann Arbor,MI)  

Cell culture: Madin-Darby Canine Kidney (MDCK) cells and Mouse Embryonic Fibroblasts (MEFs) were 

cultured in high-glucose DMEM supplemented with 10% FBS, 2mM L-glutamine, 100 U/mL penicillin, 

and 100 μg/mL streptomycin at 37C and 5% CO2. Caco-2 cells were cultured in high-glucose DMEM 

supplemented with 10% FBS, 2mM L-glutamine, 100 U/mL penicillin, and 100 μg/mL streptomycin and 

Human Transferin at 37C and 5% CO2. Cells were passaged using 0.25% trypsin EDTA every 2-3 days. 

Cells were checked for mycoplasma by Hoechst staining.  

Stargazin-GFP MDCK cells we produced by transient transfection of WT MDCK cells with a PiggyBac-

stargazin-GFP construct followed by selection by puromycin and subcloning. A clone with high 

expression of the marker and similar morphology to WT MDCK cells was selected for experiments. 

Stargazin-GFP was a gift from Michael Glotzer. Stargazin-halotag Caco-2 and MDCK cells were 

produced by lentiviral infection of WT CACO-2 and MDCK cells by a WPT-Stargazin-halotag construct 

packaged in 293T cells by a second generation lentiviral system with rev8.2 and VSVG. Viral supernatant 

was collected at 24, 48 and 72 hours then concentrated ~30x using Amicon Ultra-15 Centrifugal Filter 

Unit (100kDa). Cells were treated with virus and 8µg/ml polybrene overnight. Positive cells were isolated 

using a cell sorter.  PIP-FUCCI MDCK cells were produced by lentiviral infection with virus packaged 

the same way. Cells were then selected using 800 µg/ml G418. pLenti-PGK-Neo-PIP-FUCCI was a gift 

from Jean Cook (Addgene plasmid # 118616 ; http://n2t.net/addgene:118616 ; RRID:Addgene_118616). 

Tet P27 1-176 cells were produced using the Lenti-X Tet-On 3G (Takara Bio).  Human Snaptag-P27 1-

176 was subcloned into the Tre3g vector. Cells were infected with lentivirus for both the Tet-on 3g and 

Tre3g snaptag-p27 1-176 plasmids then selected using 2 µg/ml puromycin and 800 µg/ml G418. 

AminoSilane Glutaraldehyde modification of glass coverslips: Glass coverslips were modified as 

previously described to couple collagen gels to the surface of the glass (1). Coverslips were first cleaned 

by sonication in 70% and 100% ethanol solutions then dried with compressed air. We placed coverslips in 

a staining rack and submerged the rack in a solution of 2% (3-Aminopropyl)trimethoxysilane (APTMS) 

93% propanol and 5% DI water for 10 minutes at room temperature while stirring. Staining racks were 

removed and washed in DI water 5 times then placed in a 37C incubator for 6 hours to allow the water to 

dry and aminosilane layer to cure. The staining racks were then submerged in 1% glutaraldehyde in DI 

water for 30 minutes while stirring. Then the samples were washed 3 times for 10 minutes in distilled water, 

air dried and stored at room temperature. Activated coverslips were used within 2 months of preparation. 

Collagen gel preparation: 10x PBS, milli-q filtered water, a 5mg/ml collagen stock and 1N NaOH were 

mixed to generate a polymerization mix with 1xPBS and 2 or 4 mg/ml collagen at neutral pH. To visualize 
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collagen gel thickness we produced a fluorescently labeled collagen stock by mixing collagen with 

alexa647-NHS ester in 0.02M acetic acid overnight.  We added fluorescently labeled collagen at a 20:1 

ratio to unlabeled collagen in the polymerization mix. 70uL of the polymerization mix was added on to a 

25mm round modified coverslip and quickly spread to coat the surface using a pipette tip. Samples were 

transferred to a humidified incubator at 37C to polymerize for 1 hour. After polymerization gels were 

washed 3 times in 1x PBS and it was verified that gels were still intact and adhered to the glass by a tissue 

culture microscope.  

Glutaraldehyde crosslinked gels were prepared as above and crosslinked as previously described (2). 

Directly after polymerization and washing gels were incubated in 1xPBS containing 0.2% glutaraldehyde 

for 30 minutes. Gels were then washed quickly 3 times in 1xTBS, washed in 1x TBS at 1 hour intervals 5 

times and left in 1x TBS overnight to quench excess crosslinking groups on the gel. The gels were then 

washed in 1x PBS three times. All gels were used within 2 days of polymerization. 

Monolayer preparation: Monolayers were formed on collagen I gel to study monolayers under more 

physiologically relevant conditions than typical glass, plastic or hydrogel surfaces (3–7).  Cells were seeded 

onto collagen gels at high density (~600,000 cells on 500mm2 surface) such that cells coated ~70% of the 

gel surface at seeding. The sample was returned to the incubator overnight (8-12 hours) before the 

experiment. For inhibitor treated conditions the inhibitor was added 10-20 minutes after the cells were 

seeded on the gel to allow cells to attach before adding fluid volume. Before mounting samples, the 

monolayer was viewed under a tissue culture microscope and continuously covered a region 10-15 mm 

across. Samples were washed 3 times with 1x PBS and quickly mounted into a sealed round chamber with 

1.5mL of culture media and with equal concentration of inhibitor to at seeding. Before taking each time 

lapse the collagen gel was verified by fluorescence microscopy to be homogeneous and 150-250 µm thick. 

The monolayer was confirmed to extend at least several hundred microns in each direction outside selected 

fields of view. By only observing cells more than a few hundred microns from a free edge we avoid the 

increased migration speed and correlation from cytoskeletal assemblies specific to wound healing (8, 9).  

Fluorescence microscopy: Cells were imaged on an inverted epi-fluorescence microscope (Nikon TI-E, 

Nikon, Tokyo, Japan) with a 20x plan flour multi-immersion objective. Glycerol was used as an 

immersion medium to more closely match the index of refraction of the collagen gel. Images were 

acquired at 10 minute intervals in GFP, 642 and transmitted light channels using standard filter sets (Ex 

490/30, Em 525/30, Ex 640/30, DAPI/FITC/TRITC/cy5 cube) (Chroma Technology, Bellows Falls, VT). 

Samples were mounted on the microscope in a humidified stage top incubator maintained at 37C 5% 

CO2. Images were acquired on either a Photometrics Coolsnap HQv2 CCD camera (Photometrics, 

Tucson, AZ) or Andor Zyla 4.2 CMOS camera (Andor Technology, Belfast, UK). 

Image Segmentation: Images were segmented using custom MATLAB code. The main algorithm 

performs initial segmentation using the Phase Stretch Transform algorithm developed by the Asghari and 

Jalali (10). Phase stretch images were thresholded and skeletonized to obtain cell outlines. Broken edges in 

the skeleton were repaired using a modified implementation of edgelink developed by Peter Kovesi (11). 

After edge-linking the remaining unclosed portions of the path were removed. The interior of each cell is 

checked for high intensity features which typically indicate under-segmentation. Any region containing a 

high intensity region within the boundary are discarded. The above algorithm has 4 parameters describing 

the PST parameter set and the interior threshold. Parameters were first optimized by hand. We then 

randomly generated 1000 parameter sets around these values.  We generated a rough ground truth 

segmentation by averaging over several parameter sets which we verified to segment the images well. The 

1000 parameter sets were checked against this ground truth to choose a final parameter set. This parameter 
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set was used to segment all images analyzed in this paper. Examples of the segmented outlines overlaid on 

the fluorescence images are found in the supplement (Movie S8). 

Cell tracking: Cell tracking was performed using established particle tracking methods (12). Cell centers 

were determined by taking the centroid of each region in the cell outlines generated as described above in 

Image Segmentation. The particle trajectories were compiled from these position measurements using 

SimpleTracker, a MATLAB function developed by Jean-Yves Tinevez (13). For each image in a given time 

series the average displacement was determined and was subtracted from the cell positions to account for 

stage drift between each frame. We determined a lower bound on the tracking error by tracking image series 

of fixed cells (Fig. S15) 

For each movie the cell position, shape, magnitude of displacement at a 10-minute interval, and cell area 

were determined for each individual cell over all time points. The average magnitude of displacement was 

calculated for each field of view at each time point to obtain a cell speed. The inverse of the average area 

was calculated to determine cell density in each frame. We computed displacements squared at all 

subsequent images in the time series and averaged across the dataset to produce a mean squared 

displacement curve (supplemental figure 3d). Cell positions, velocities and shapes obtained from the 

tracking were used to compute all correlation functions described in the following sections. 

Measurement of Cell Shape: We benchmarked a variety of algorithms for determining perimeter and area 

and found many give rise to large systematic errors. We have chosen to report the shape of a polygon 

reconstructed from identified cell vertex locations which we found to be the most accurate and robust metric 

(Fig S1, supplemental discussion). Shape parameter was computed for each cell based on the perimeter and 

area of a polygon constructed from cell vertex locations. The vertex locations parameterize the vertex model 

and therefore also allow for direct comparison with the model. Reconstructing a polygon from vertices also 

removes resolution dependent ambiguity in perimeter measurement (Coastline Paradox). 

Vertex locations were found by locating branch points in the segmentation mask generated as described in 

Image Segmentation using the built in Matlab bwmorph function. Cells which do not have a complete set 

of segmented neighbors also do not have a complete set of vertices and therefore were discarded. We 

measured average cell shape for the full set of cells and cells remaining after discarding edge cells and 

found only a small difference in the average. We believe this difference comes from a small segmentation 

bias for cells whose outline is not correctly constrained by the neighbor. Therefore, the interior cell shapes 

are likely slightly more accurate. The shape parameter q = perimeter/sqrt(area) was measured by computing 

perimeter and area for the reconstructed polygon. The shape parameter is related to the another popular 

shape metric – circularity = 4*pi*area/perimeter2 = 4*pi/q2. Final cell shape was determined for each 

experiment by averaging the shape parameter for all fields of view measured to have a speed below 

0.04µm/min. This final shape value is within a few percent of the value obtained by fitting the shape vs 

time curves to an exponential decay. 

Simulation methods: We perform numerical simulations of monodisperse thermal Voronoi models, as 

described in (14). Briefly, we begin by writing down a dimensionless form for the standard vertex model 

energy, E= ∑ [𝑘𝐴(𝑎𝑖 − 𝑎0)
2 + (𝑝𝑖 − 𝑝0)

2]𝑁
𝑖=1  . This simple expression assigns an energy to the cells in a 

confluent monolayer in terms of their preferred geometry. The energy depends on the area 𝑎𝑖 and perimeter 

𝑝𝑖 of each of the 𝑁 cells (indexed by 𝑖), which are determined by a Voronoi tessellation of the cell positions. 

The unit of length in the simulations are defined such that the average cell area is unity, and we also set 

both the preferred area 𝑎0 = 1 and the stiffness parameter 𝑘𝐴 = 1. The preferred value for the cell 

perimeter, 𝑝0, then constitutes the remaining control parameter which sets the target state of the monolayer.  
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We then use the cellGPU package to simulate overdamped Brownian dynamics of the model at 

different temperatures, 𝑇. The curves in Fig. 2c were created by performing an ensemble average over 

approximately 30 independent systems of 𝑁 = 1000 cells at each (𝑝0, 𝑇) point in parameter space along 

the lines indicated in (Fig. 2b). Each system was initialized in a high-temperature configuration and then 

allowed to equilibrate at the target temperature for a large multiple of the system’s characteristic 

relaxation time, as estimated from the data in Ref. (15); after this equilibration period the observed 

average shape parameter of the cells and mean-squared displacement at several typical time lags was 

evaluated. 

Numerical simulations of the vertex model with fluctuating junctional tension are performed as 

previously described (16). The dimensionless energy of the vertex model is written as a function of the 

vertex coordinates {𝑟𝑖⃗⃗ }; 𝜖({𝑟𝑖⃗⃗ }) = (1/2)∑ [𝑘𝛼(𝑎𝛼 − 𝑎0)
2 + (𝑝𝛼 − 𝑝0)

2] + ∑ Δ𝜆𝑖𝑗(𝑡)𝑙𝑖𝑗(𝑖,𝑗)
𝑁
𝛼=1 . Here, 𝛼 

and 𝑁 denote the label of each cell and the total number of cells, 𝑎𝛼 and 𝑝𝛼 are the area and perimeter of 

cell 𝛼. The preferered area and perimeter are denoted as 𝑎0 and 𝑝0, respectively. 𝑘𝛼 is the stiffness 

parameter.  In the non-dimensionalized form, we choose the length scale to satisfy the average cell area 

〈𝑎𝛼〉 = 1. The edge length between the vertices 𝑖 and 𝑗 is denoted as 𝑙𝑖𝑗, and the fluctuating line tension is 

introduced by Δ𝜆𝑖𝑗(𝑡). The dynamics of Δ𝜆𝑖𝑗(𝑡) is described by an Ornstein-Uhlenbeck process satisfying 

〈Δ𝜆𝑖𝑗(𝑡)〉  =  0 and 〈Δ𝜆𝑖𝑗(𝑡1)Δ𝜆𝑘𝑙(𝑡2)〉 = 𝛿𝑖𝑘𝛿𝑗𝑙𝜎
2 𝑒−|𝑡1−𝑡2|/𝜏 . The vertex dynamics is described by the 

time-evolution equation 𝜂(𝑑𝑟𝑖⃗⃗ /𝑑𝑡) = −∂𝜖({𝑟𝑖⃗⃗ })/ ∂𝑟𝑖⃗⃗ .  In this paper, we choose the 𝜎 = 0.2, 𝜏 = 1, 𝑘𝛼 =
 1, 𝑎0 = 1, and 𝜂 = 1, and we run simulations with 340 cells in a square simulation domain with periodic 

boundary conditions. As we for our Voronoi model simulations, we initialize the cellular configuration 

under a high-temperature condition (𝜎 = 0.35, 𝜏 = 1), and thermalize with the target parameters. After the 

thermalization, we begin setting the tension Δ𝜆𝑖𝑗(𝑡) of edges to zero permanently by randomly selecting a 

target edge every constant time interval 𝜏𝑅.  

Preparation of Fibroblast conditioned Medium: Fibroblast conditioned medium was prepared as 

described previously (17). We cultured a 10 cm dish of MEF cells to confluence. Cells were washed and 

20 mL of fresh medium was added to the cells. 48 hours later the media was collected and centrifuged to 

remove any cells. Conditioned media was aliquoted and frozen at -20C then used within 1 month of 

preparation. The conditioned medium was mixed 50:50 with fresh culture medium and added to MDCK 

cells 15 minutes after plating. We tested that fibroblast conditioned medium caused cell scattering of small 

colonies on collagen coated glass substrates as previously described (18).  

Cell division tracking: We found that our cell tracking consistently does not follow cell trajectories through 

a cell division because the distance threshold of trajectory linking is significantly larger than a cell radius. 

We exploit this to identify cell divisions and to measure shape change independent of cell division (Fig. 5d, 

Fig. S10). We identified cell divisions by identifying pairs of cells which appear in adjacent to each other 

in a frame after both cells were not present in the previous frame. We further filter out cells which are not 

of similar size to one another. We confirmed by inspection that this gives us a subset set of cells which have 

divided in the previous frame with few false positives. We then find the mother cell by looking several 

frames back for a cell near the centroid of the pair of daughter cells. We identify neighbors adjacent to both 

or one of the daughter cells and track each of these cells back in the trajectory to compare cell shapes before 

and after the division. We then average across all cell divisions in the dataset to produce the final values 

(figure 5e). 

Calculation of mean squared displacements: Particle trajectories were compiled as described in the 

Particle Tracking section of the methods. We took each trajectory and decomposed it into non-

overlapping sub trajectories starting from the initial time point with length ranging from tau = 10 minutes 
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to the full trajectory length. The average displacement squared for each sub trajectory was computed and 

averaged across the dataset (Fig.  S5d). To compute the time averaged mean squared displacement 

averaging was done for all sub-trajectories of a single particle and each cell with a full trajectory is plotted 

(Fig S2a). To plot mean squared displacement against time we averaged for a given value of tau and t 

across the dataset (Fig. S2b). 

Three Pixel vector method of measuring perimeter and area: The three pixel vector method was 

implemented as previously described (19). Briefly, the different ways of linking pixels are divided into 4 

classes and 13 subclasses. Each subclass has a defined length giving a 1x13 vector. For each class there is 

a linking correction depending on the difference of the direction of the current and subsequent vector 

which is specified by a 4(classes)x16(directions) matrix. To determine the areas enclosed by each vector 

we sketched the set of 13 available classes of linking and computed the area of edge pixels and pixels 

outside the polygon for each case. We obtained the values [2,3,2,2,2,2,3/2,1,11/4,3,2,3/2,2]. We then 

inferred area corrections for each class from their respective perimeter corrections linking as follows : 
[0,0,0,0,1/2-2,1-1/2,2-2,0,2,2,2,2,1,1,1,1]; [0,0,1/2-2,1/2-2,2-5,0,0,2,2,2,1,1,1,1,0,0]; [0,-1,-1,2-

2,0,0,0,0,2,1,1,1,1,0,0,0]; [0,0,0,1/2-2,2-2*1/2,2-2,0,2,2,2,2,1,1,1,1,0]. We compute the perimeter as 

described by Inoue et al. and using the same rules and values specified above plus the area of the interior 

pixels calculate the area of the polygon. 

Field of View analysis: The shape vs speed for different size fields of view were computed by 

segmenting each field of view into a set of sub fields. To simplify this process first the field of view was 

truncated into a square to make sub division possible in such a way that the same set of cells are always 

measured. Then the field was subdivided into 1, 2x2, 3x3… 10x10 regions. We computed the average 

speed and shape in each sub-region, then binned the results of all regions according to average speed in 

the region. To characterize noise in the correlation we computed the average deviation of the derivative in 

a linear region of the curve for shape parameters ranging from 3.93 to 3.97. 

Measurement of neighbor exchange rate 

To measure a neighbor exchange rate, we detected 4 fold vertices and computed the ratio of 4 fold to 3 

fold vertices per unit time. Such 4 fold vertices are not stable in the system and thus result in either a 

successful or attempted neighbor exchange. Our method does not detect the difference between successful 

neighbor exchanges and attempts which resolve in the original direction. A 4 cell vertex after formation 

was observed to resolve in either direction within at most 10 frames. Therefore, we iterated through each 

set of outlines and detected all 4 cell vertices. We discarded detections which happened within 10 pixels 

and 10 frames of a detected event to avoid double counting due to time delay between formation and 

resolution. This set of candidate events contained many false positives where the outline appeared to have 

a four-fold vertex but upon inspection of the raw data we observed a short 3 cell vertex. To remove these 

false positives, we manually sorted through the 4 cell vertex candidates and selected out real events. 

Cell Doublet preparation and measurements 

Cell doublets were produced by treating cells with trypsin until detachment from cell culture dishes. 

Around 15,000 cells were transferred to a PDMS well which was pretreated with 1% Pluronic f127 for 1 

hour then washed 3 times with 1X PBS. Cells were incubated in the wells at 37C and 5% CO2 for 4 hours 

in the presence of inhibitors or doxycycline (100ng/ml) and halotag and snaptag ligands (1µM) then 

imaged at room temperature for less than 30 minutes. For the “Contact inhibited” condition cells were 

plated at nearly 100% confluence and grown for 3 days prior to detachment while other conditions were 

cultured under normal cell culture conditions. Cells were imaged by mounting PDMS wells on coverglass 
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and using imaging methods described above. The contact angle was measured between isolated pairs of 

cells manually using imageJ. 

FUCCI Measurements 

Cells were imaged in GFP and RFP channels similar to above methods. Images of FUCCI markers and 

cell boundaries were segmented using Phase Stretch Transform in Matlab. Each cell was identified using 

the cell boundaries and was determined to be GFP or RFP positive by measuring the intensity contained 

within the segmented images of each nuclear marker. The percent of cells in G1 was determined by taking 

the ratio of cells identified as only GFP positive to the cells identified as GFP positive, RFP positive and 

positive for both markers.   
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Additional Discussions 

Shape Metric Benchmarking - Common Shape Metrics are resolution Dependent 

In the initial analysis we noticed an unexpected density dependence of cell shape which had a different 

magnitude depending on which metric we used for measuring shape. We therefore decided to benchmark 

methods of measuring object shapes in digital images. Measuring the shape of polygonal objects 

projected onto a pixel grid is nontrivial because segmented edges are limited to single pixels while the 

actual object edge is a subpixel feature. Data is recoded on a 6.45µm/pixel camera at 20x magnification 

giving 0.3225 µm/pixel final resolution for a cell radius of ~15µm. Therefore, the edge of a cell contains 

few enough pixels that choice of shape metric is important. The simplest method to determine a length in 

an image made of pixels is to count the number of pixels along the perimeter. A more sophisticated 

method count pixels at 0, 90,180,270 degree angles (even) as a distance 1 and diagonal (odd) pixel 

connections as sqrt(2). This method is used to determine perimeter in the popular image processing 

software imageJ. This method overestimates the length where even and odd edges meet. Another method 

developed by Vossepoel uses a correction factor for pixels which change from odd to even with parameter 

values fit from simulated images of lines. This is used in the built in perimeter determination in 

regionprops in Matlab. This correction factor is not always accurate for small polygons. The corner 

correction can also be made by estimating that these connection have length sqrt(5) although this method 

does not correctly capture the length of some corner corrections. The Three Pixel Vector method 

developed by Inoue and Kimura explicitly implements all possible corner corrections (19). Object areas 

also can be measured in several ways. The most common method is to add up all the pixels in the polygon 

which the default method used in ImageJ and Matlab. This method overestimates the area of the polygon 

as it encloses area outside of the corrected perimeter contours described above. Instead the area can be 

measured by constructing the contours described above and finding the enclosed area.  

To measure shape we implemented several of the methods described above. We also implemented an 

additional method which is specific to our dataset, where the objects can be defined by simple polygons 

constrained by the cell vertices. To measure this polygon shape we measure vertex locations estimated to 

the nearest pixel and reconstruct the polygon by connecting the vertices by straight lines. The vertex 

locations were determined by locating branch points in the cell outlines. One drawback of this method is 

that segmented cells which do not have a complete set of neighbors lack a complete set of vertices and 

must be discarded. For every cell with a complete set of neighbors, the vertices belonging to each cell 

were determined. The perimeter and area of a polygon defined by a set of vertex locations can be 

computed directly without lines being interpolated on to a grid of pixels. A representative image of the 

vertex locations on the membrane GFP image are displayed (Fig. S1b). 

We compared the relationship between cell shape and density which reveals the presence of resolution 

dependent artifacts at increased density (Fig S1c). We observe a larger density dependence for more 

simple methods of perimeter and area determination which are known to produce large resolution 

dependent errors. The methods from three pixel vector closely match the vertex reconstruction – we infer 

that these are the two most accurate methods. We confirmed these findings by generating simulation 

images from the thermal voronoi model with known shape parameter and measuring the cell shapes (Fig 

S1d). This confirms that TPV and vertex reconstruction typically have less than 1% error. Finally, we 
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segmented images of fixed cells (Fig S9) and measured the cell shape over a trajectory. This shape should 

be constant because there is no motion in the images only small changes in signal to noise and small stage 

drifts. We compared the measured values across each trajectory to the mean and observe larger 

fluctuations in the TPV method (Fig S1e). This indicates that small differences in the segmentation 

boundaries can lead to relatively large errors in the final value of shape parameter. Therefore, the vertex 

reconstruction appears to be more robust to small changes in the signal. Although the vertex 

reconstruction requires discarding cells with an incomplete set of neighbors, for our 335x445 µm field of 

view and signal to noise the number of measurements (100-400 cells) is still large enough to provide a 

reliable average. 

Cell Motility decreases with time 

We observed that dynamics in the MDCK monolayers evolve with time. To confirm that individual cells 

show similar motile behavior we plot the time averaged mean squared displacement (TAMSD) 

(supplemental figure 2a). We observe qualitatively similar behavior for all cells in the monolayer. At 

short time scales the motion is nearly ballistic, however at later lag times the TAMSD plateaus for each 

cell. This indicates that at longer time scales most cells are confined by the neighboring cells and as a 

result do not end up traveling more than a few microns – only a fraction of a cell diameter. We also look 

at the time evolution of this motion by plotting the mean squared displacement as a function of time 

(supplemental figure 2b). We observe that for different lag times the mean squared displacement 

decreases. This shows that at later time points even for short time scales the diffusion is slower. 

Correlation between shape and speed is not dependent on field of view size or lag time 

From our vertex model, we expect that shape parameter is useful for describing dynamics in the system.  

In the model, passive and active forces are defined at the level of single cells and therefore we expect that 

behaviors are mainly dictated by a cell and its nearest neighbors. The relationship between shape and 

speed should not be dependent on how the system is measured, meaning that the size of the field of view 

or lag time is somewhat arbitrary. We first test the relationship between the correlation we observe and 

the field of view size. We subdivide the field of view into at 335µm square, 2x2 168µm squares, … 

10x10 35µm squares (Fig. S3a). These squares contain the same data but if the properties of the system 

were not uniform, the smaller partitions may show different behaviors. If the forces are defined at the 

cellular scale, as we expect from the model, this partitioning should not change the relationship between 

shape and speed. We observe that across all partitions the same final relationship is recovered (Fig. S3b). 

However, we see that there is less noise in the correlation curve when partitioning into smaller regions. 

Because the correlation curve is not linear and the field of view is not uniform, as we average over a 

larger area the average shape does not capture local shape variation which results in regions much faster 

or slower than the average. We plot the fluctuations in the correlation curve with respect to the average to 

describe this effect (Fig S3c). As we reduce the size of the region we see the curve becomes more smooth 

until we reach a noise floor at ~100µm. We anticipate that if we had lower noise of cell displacements 

and a full segmentation these fluctuations would continue to decrease to the scale of a few interacting 

cells. 

We also wanted to ensure that this correlation is not dependent on the lag time within a range of 

timescales. We plot the mean squared displacement as a function of the shape parameter at the beginning 

of each trajectory (Fig S3d). We see that for each lag time there is still a relationship between shape and 

speed. We plot the relationship between shape and speed for one field of view at different lag times and 

see similar behavior (Fig S3e). The relationship shifts down because the motion is diffusive so as lag time 
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is increased by a factor of two displacement increase by a factor of sqrt(2). We also see the same trend for 

the ensemble averaged correlations (Fig S3f). 

Cytoskeletal rescue experiments do not restore relationship between shape and speed 

Across inhibitors tested we examined the relationship of shape and speed. A subset of these conditions is 

plotted (Fig S8). In general, we see that the relative relationship between shape and speed for a given 

condition is similar however the absolute values are all shifted in the inhibitor cases. One potential 

concern in these experiments is that cytoskeletal polarization may be perturbed  (20–24). Changes in 

cytoskeletal organization may affect how well the system is described by vertex models which assume the 

monolayer mechanics are dominated by cortical actin at the cell-cell junctions. We wanted to examine if 

these defects are related to changes in cell polarity observed for many of these inhibitors. We attempted 

rescue experiments based on published rescues of RAC and FAK knockdown experiments. It has been 

observed that RAC promotes apical basal polarity through its role in assembling laminin into the 

basement membrane (24). We seeded cells on a collagen gel with 1mg/ml matrigel to see if the inclusion 

of exogenous laminin in the matrix via the matrigel would rescue the relationship between shape and 

speed (Fig S9b). We observe the same relationship between shape and speed in the presence of matrigel. 

We also attempted inhibiting both FAK and ROCK at the same time. ROCK inhibition rescues wound 

healing in FAK knockdown cells and restores apical basal polarity (20, 25). We observe similar behavior 

in conditions with both inhibitors (Fig. S9a) 

Neighbor exchanges rates are low 

We measured the rate of neighbor exchanges for one wild type and one inhibitor dataset (Fig. S12a). We 

were not able to reliable measure neighbor exchange rates with automated analysis so we only made this 

measurement for these two datasets. These neighbor exchange rates range from 1-10 per hour per 1000 

cells which seems low compared to observations from some phases of development where neighbor 

exchanges are important for tissue flow (26). We observe that neighbor exchange rates are shape 

dependent and lower in the inhibitor treated conditions at all shape parameters. This suggests that the rate 

of neighbor exchange also depends on the cell division fraction, or active stress in the system. We relate 

these neighbor exchange rates to observed velocity and observe a correlation (Fig S12b).  

A metric qtrack can be related to different modes of shape change 

We wanted to confirm that the relationship between final shape and cell divisions was not simply the 

consequence of oriented cell division. We exploit the fact that qtrack, the difference in cell shape between 

subsequent time steps (qtrack(t) = <q(t+1)-q(t)>), measures certain forms of cell shape change while 

ignoring others. For a given time step we directly observe, by tracking, a subset of the shape change 

which occurs. We denote the two types of cell shape change, division based (Q2) and deformation based 

(Q1 / qtrack). The observed subset selectively ignores cell divisions, because division results in large 

enough displacements that the trajectory is broken in our tracking algorithm. qtrack also ignore a subset of 

shape changes where the cell is not segmented in the initial or subsequent frame which are of either type 

(Fig S10a). Importantly, only type 1 shape changes are observed in qtrack. Therefore, as long as there is not 

a difference between the behavior of cells which are not segmented we can obtain the average value of a 

Q1 shape change for a give frame. We can also determine the total shape change by measuring shape in 

each frame over all cells. We show that the ratio of these two, multiplied by a small correction factor 

(~1%), gives a relationship for the relative value of non-division based shape change (Fig  S10b, S10c). If 

this value were on average 0 we could explain the correlation in figure S10d by oriented cell division. We 

observe values much larger than zero for this metric demonstrating there is an additional mechanism 

driven by cell divisions. Our calculation ignores the addition of a neighbor to cells adjacent to the 
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dividing cell. We confirm that the shape change by qtrack is several times larger than the shape change 

which would result from the gain of an additional neighbor (Fig  S10e). We observe that this metric is 

nearly 1 across all average shape parameters for three datasets with very different division rates (Fig. 

S10e). We show that for one condition qtrack is similar to the total shape change except at early time points 

(Fig. S10f). We also observe that the direct shape change before and after cell division is shape dependent 

in this dataset consistent with the deviations in qtrack we observe at high shape parameter (Fig. S10g).  

qtrack Derivation 

The following derivation shows how the ratio of qtrack to qtotal  can be interpreted in Fig S10. We see that 

the ratio is 1 if shape change through division is small or zero if shape change through division is equal to 

the total. 

ΔQi = Σ Δqi 

ΔQ = ΔQ₁+ΔQ₂ 

n<Δq >= n1<Δq₁>+n₂<Δq₂> 

ρA<Δq > =  (ρ-Δρ)A<Δq₁>+2ΔρA<Δq₂> 

1 = (ρ-Δρ)<Δq₁> / ρ<Δq >    +       2ΔρA<Δq₂>  / ρA<Δq >            

 1 =((ρ-Δρ)/ ρ)( Δqtrack/Δqtotal) + ΔQ₂/ΔQ 

((ρ-Δρ)/ ρ)( Δqtrack/Δqtotal) = 1 - ΔQ₂/ΔQ 

 

qtrack values are consistent with junction length changes as the main source of shape change 

We measured shape change along cellular trajectories ∆qtrack(t) = <q(t+1)-q(t)> which we show 

measures deformation based changes and ignores oriented division effects (Fig. S10b; S10c). We then 

compare this to the total shape change between time points ∆qtotal(t) = q(t+1)-q(t) to measure the relative 

contribution of junction length changes and oriented division (Fig. S10e). We observe a slight discrepancy 

between these two metrics at early times in the experiment. At these time points cell aspect ratios may be 

large enough for oriented division to cause a net decrease in cell shape (Fig. S10d). However, we observe 

at later time points the qtrack metric which ignores oriented division effects is sufficient to capture nearly all 

shape change in the monolayer. Across conditions with different division fraction junction length change 

consistently explains a majority of shape change in the monolayer (Fig. S10e). Therefore, the relationship 

in figure 5d implies that in monolayers with higher division fraction there is additional cell shape 

remodeling which occurs as a result of differences in cell mechanical properties or active stress caused by 

cell division.  
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Fig. S1: Shape metrics are resolution dependent. (a) Schematics describing different popular methods for 

determination of perimeter and area of a polygon constructed from pixels. Methods depicted include the 1 
root 2 method – default in imageJ, and voesspoel – default in Matlab regionprops. We also schematize 

several methods for determining polygon area. Sum of pixels is default in both imageJ and Matlab (b) An 

image of cell outlines (green) with marked vertex locations (pink). The cells which do not have a 

complete set of neighbors are discarded and remaining polygons are constructed from the vertices. We 
show an overlay of detected vertices on the raw data. (c) For one experimental dataset, WT on 2mg/ml 

collagen – we plot shape vs density for a variety of shape metrics and Speed vs shape for the same set of 

metrics. Errorbar represents the standard deviation of 60 fields of view. (d) We segmented simulation data 
and plot shape/actual shape vs area for this data for a variety of shape metrics for images of different 

resolution. We observe that some shape metrics show large errors and are highly resolution dependent. 

We show a zoom in of the top performing metrics. Error bar represents the standard deviation of three 

replicates (e) We measured shape of fixed cell data and used the two top performing metrics to measure 
cell shape. The fixed data is a time series of images where there is no cell motion but images show 

photobleaching and noise variation. We know the shapes are not changing with time, however the 

measured shape fluctuates due to changes in noise. We measure the distribution of measurements around 
the mean for the two metrics for each cell. Shapes reconstructed from vertices are much more robust to 

noise. 
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Fig. S2: Mean square displacements are time dependent. (a) Time averaged mean squared displacements 

for individual cells show a plateau at long time scales indicating cells are not freely moving at long times. 

A small representative subset of 100 cells from one field of view is displayed (b) mean squared 

displacement for different lag times decay with time indicating that cell motion is reduced at later times. 

Data is across all cells in 60 fields of view in a single single experiment on a 2mg/ml collagen gel under 

wild type conditions. 
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Fig. S3: Correlation between shape and speed does not depend on the field of view size or time between 

images. (a) representation of different field of view sizes. For this analysis the field of view was first 

truncated into a square window 335x335 µm. This field was subdivided into 2x2, 3x3… 10x10 sections 

and each section was averaged independently as if that was the full field of view. (b) speed vs shape 

parameter for the full field of view 335x335 µm and a 5x5 truncation 67x67µm. Both field of view sizes 

show the same final average. All other truncation sizes give the same average values. Errorbars represent 

the standard deviation of 60 and 1500 fields respectively (c) comparison of the derivative in the linear 

portion of the curve in b, from q=3.93 to q = 3.97. The value is larger for large fields of view because 

there can be greater heterogeneity within the same field of view. At lower values the linearity plateaus 

due to noise from averaging fewer cells. This shows that our data is consistent with energy which is 

defined at the single cell level. At ~100um or groups of a couple dozen cells we reach a noise floor. This 

analysis uses the TPV metric for cell shape to ensure there are enough cells within small fields of view to 

get a representative average. (d) Mean squared displacement for a dataset on a WT 2mg/ml collagen gel. 

Curves are binned according to the shape parameter at the initial time of each subtrajectory. 

Subtrajectories are not overlapping. Lag times are at 10 minute intervals. We observe that for any lag time 

there is lower displacement for lower shape parameter. (e) Shape parameter vs speed for a single field of 

view over 12 hours for different lag times. (f) Shape parameter vs speed averaged across all fields of view 

in the sample. We see that increasing the lag time shifts this curve downward consistent with the motion 

being diffusive. At longer times the distance traveled only increases by sqrt(t) as time increases by t 

leading to lower values of speed. The data appears to reach the noise floor at low shape parameter for 

larger tau.  
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Fig. S4:  Monolayer remodeling does not depend on initial cell seeding density (a) Cell Shape vs time for 

monolayers seeded at two different densities. Both samples were made at the same time with ~ 700K cells 

(high density) and ~350k cells (low density). The samples were imaged sequentially starting from the 

time point when the monolayer became confluent across most of the cover slip. (b)  Relationship between 

cell shape and speed for the samples in a). 
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Fig. S5: Additional modeling of relationship between cell shape and speed in Active Vertex models. (a) 

Parameters of the thermal Voroni model were varied along several representative curves. Along these 

curves a simulated monolayer was equilibrated at each point then measurements were made on the 

monolayer. Solid curves approach zero temperature at a value of p0 where the tissue is rigid, while dashed 

curves approach T=0 at a value of p0 where the tissue is floppy. Colors represent trajectories with 

different slopes. Dashed lines indicated different values of p0 approaching T=0. Arrows indicate the order 

of simulations along a trajectory (c) Observed values of speed (quantified by MSD in a given time 

window) and shape corresponding to the parameter space trajectories shown in panel b). MSD is given in 

units of √Cell Area over a time window of 10 natural time units 
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Fig. S6: Shape, Speed and cell area decrease with time across all conditions (a) plot of speed vs time for 

all conditions in figure 2b. The final speed for all the time series plateau at 0.03um/min so this value is 

subtracted from each time series. Curves are colored in order of speed at time = 0 min. The same color 

map is used in b ,c (b) density vs time for all datasets. The data is colored by initial density and differs in 

color map from a-c. (c) plot of shape-final shape for all data. Each time series decays to the final shape 

with similar kinetics. (d) several datasets were too noisy and were moved to a different plot for clarity. 

These datasets were smoothed temporally with a 10-point window to reduce noise. These data slightly 

reduce in shape with time however the difference in initial and final shape are comparable to the noise in 

our measurement.  All data points represent the time average of at least 30 fields of view in one sample. 

  



 

18 
 

 

 

Fig. S7: Relationship between cell shape and speed is independent of substrate stiffness (a) relationship 

between shape and speed on division rate matched conditions on collagen, 16KPa polyacrylamide, and 

Glass (b) relationship between speed and cell density on substrates with different stiffness. Error bars 

represent binned averages at each speed for at least 30 fields of view over at least 60 time points. 
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Fig. S8: Shift in relationship between shape parameter and speed is qualitatively similar across 

conditions. (a) Representative images for several inhibitor conditions at low average speed. (b) Images on 

stiff substrates (c-e) Speed vs Shape parameter curves for different inhibitors. Similar shifting behavior is 

observed across these conditions. (f-g) Similar behavior is also observed on stiff substrates and for 

CACO-2 epithelial cells. Error bars represent binned averages at each speed for at least 30 fields of view 

over at least 60 time points. 
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Fig. S9: Rescue experiments do not restore shape speed correlation. (a) Comparison of shape speed 

correlation for cells treated with a FAK inhibitor and with the addition of a Rock inhibitor. Rock 

inhibition has been observed to rescue the polarity of 3D MDCK cultures with FAK knockdown. Rock 

inhibition has also been observed to restore collective motility in FAK knockdown cells (see discussion). 

(b) Comparison of shape speed correlation for cells treated with a RAC inhibitor on collagen gels and 

collagen gels with 1mg/ml matrigel. RAC is required for the assembly of laminin at the basal surface of 

3D cultures of MDCK cells. The polarity defect of RAC knockdown cells can be rescued by providing 

laminin, a component of matrigel, in the substrate (see discussion). Neither experiment significantly 

restored the correlation between shape and speed. Error bars represent binned averages at each speed for 

at least 30 fields of view over at least 60 time points. 
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Fig. S10: Oriented division is insufficient to explain differences in monolayer remodeling (a) Schematic 

of different modes of shape change – either shape changes during a cell division Q2 or within a trajectory 

Q1. There are additional q1 type and q2 type shape changes which are ignored by cqq. (b) schematic of 

different sources of cell shape change and their relative values of qtrack (c) for a single condition we plot 

qtrack  and qtotal  over time. We observe that for most of the experiment these metrics are the same.  (d) ratio 

of qtrack to qtotal for three different conditions with variable division fraction noted in the legend. We 

observe in all cases that the ratio is close to 1 independent of cell shape. Error bars represent standard 

error of each bin. (e) The qtrack metric has ignored the gain of neighbors for cells adjacent to division. We 

show that the value of qtrack is several fold larger than this effect. Points represent time averaged values for 

at least 50 fields of view (f) average shape change per cell division from division tracking data as a 

function of the average cell shape. We observe larger decreases in cell shape when for the mother cell and 

neighbors when average cell shape parameter is large. Error bars represent standard deviation of divisions 

in each bin (h) plot of total cell division vs total shape change. If cell divisions cause all shape change, we 

would expect a strong correlation between these variables. Each point represents a different condition 

from Fig 5a. (g-h) relationship between shape parameter and the fraction of cells with either 5,6, or 7 

neighbors for different conditions. Across these conditions we observe a common relationship between 

the topology of the monolayer and the shape parameter. 
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Fig. S11: Cell divisions do not produce large deformations of the monolayer (a) representative outlines of 

dividing cells in the monolayer during mitotic rounding, cytokinesis and reintegration of daughter cells 

into the monolayer. (b) Measurement of neighbor cell speed before and after cell divisions. All cells 

adjacent to a detected cell division are averaged for a given time point and compared to the average cell 

speed at that time point. Cell speed is the displacement of cells over a 10 minute lag time. 
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Fig. S12: Neighbor exchange rates depend on shape and cell division rates (a) Neighbor exchange rate vs 

shape for WT and FAK inhibited cells on 2mg/ml collagen gels. Neighbor exchanges were counted by 

identifying 4 fold vertices in the data. A 4-fold vertex represents an unstable configuration in the system 

and therefore will either resolve in the opposite direction it was formed (successful exchange) or back in 

the same direction (failed neighbor exchange). Our method does not differentiate the two types of 

neighbor exchange. Each point is the ratio of four fold to three fold vertices detected at the given average 

shape parameter across at least 50 fields of view and 80 time points in each condition. (b) relationship 

between neighbor exchange rates and measured cell speed for data points in a) 
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Fig. S13: Inhibition of ROCK does not lead to large reduction in cell motility (a) representative maps of 

cell speed before and after adding inhibitors of CDK1 (5µM RO-3306) and ROCK (20 µM y27632). 

Scale bar is 50 microns (b) measurements of cell shape vs speed for each field of view 100 minutes before 

and after adding the CDK1 inhibitor (c) measurements of cell shape vs speed for each field of view 100 

minutes before and after washing out the CDK1 inhibitor (d) measurements of cell shape vs speed for 

each field of view 100 minutes before and after adding the ROCK inhibitor (e) plot of average cell speed 

vs time for samples treated with ROCK inhibitor. 
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Fig. S14: Time-evolution of the average cellular speed, the average shape parameter and the bond 

orientational order parameter (BOOP) for different shape indices, p0, with τR=1  

(a) The average cellular speed is plotted against the average shape parameter. The curves are obtained by 

smoothing the data points. (b) The average shape parameter is plotted against the fraction of active edges. 

(c) The BOOP is plotted against the fraction of active edges. (d) The average cellular speed is plotted 

against the average shape parameter with the color mapping the value of the BOOP. The color is mapped 

as shown in the color bar. In (a-c), 𝑝0 = [3.70,3.75,3.80,3.85,3.90,3.95,4.0] from dark color to light color. 

In (d), the data for each 𝑝0 is respectively represented by left-pointing triangle (3.70), star (3,75), filled 

circle (3.80), down-pointing triangle (3.85), diamond (3.90), up-pointing triangle (3.95) and square (4.00) 

symbols. In (a-d), the direction of time is indicated by dashed arrows.   
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Fig. S15: Different fields of view across the sample are qualitatively similar to the mean. (a) values of 

shape parameter for each field of view over time (b) density against time for the same set of fields of 

view. (c) speed vs time for the same set of fields of view (d) shape vs speed for the same set of fields of 

view. Time points are taken every 10 minutes. Data is colored according to the initial speed in the field of 

view. Colors are consistent across all panels. We see that the datasets which have larger initial speed also 

have larger initial shape and lower initial density. 
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Fig. S16: Characterization of lower bound for noise floor (a) relationship between shape and speed in 

WT data on a 2mg/ml collagen gel and under the same conditions but fixed in 4% PFA for 10 minutes 

before imaging. We observe an estimated noise floor with minor shape dependence and average value 

well below the speeds measured in the experiment. The noise floor may be larger due to larger 

fluctuations in protein levels and cell heights in live samples. Points represent the average cell shape and 

speed at a single field of view and time point (b) heat map of perceived displacements in fixed data. 

Measurement error is fairly homogeneous and very few single cells tracking errors comparable to 

experimental displacements. 
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Legends for Movies S1 to S8 

Movie S1: Representative time series from a WT monolayer on a 2mg/ml collagen gel. Tracked 

displacements and cell shapes are plotted as colormaps on the outline generated from segmentation. Time 

step is 10 minutes. 

Movie S2: Representative time series from a WT monolayer on a 2mg/ml collagen gel (left) and on a 

4mg/ml crosslinked gel (right). Time step is 10 minutes. 

Movie S3: Representative time series from a monolayer treated with 100 µM RAC inhibitor NSC23766 

on a 2mg/ml collagen gel. Tracked displacements and cell shapes are plotted as colormaps on the outline 

generated from segmentation. Time step is 10 minutes. 

Movie S4: Representative time series from a WT condition (left) and with 50:50 Fibroblast conditioned 

medium to normal culture medium (right). Time step is 10 minutes. 

Movie S5: Representative time series showing wash in and wash out of the CDK1 inhibitor RO-3306. 

The inhibitor was added at 5µM at 5:00 and washed out of the imaging chamber at 10:00. Colormap of 

cell speed is plotted on the segmented cell outlines. Time step is 10 minutes. 

Movie S6: Representative time series showing behavior after addition of microtubule destabilizing 

compound Nocodazole. Nocodazole was added at 300nM at 4:00. Time step is 10 minutes. 

Movie S7: Representative time series showing behavior after addition of DNA crosslinker Mitomycin C. 

Mitomycin C was added at 20µg/ml at 7:30. Time step is 10 minutes. 

Movie S8: Representative movie showing the segmentation of a time series. Segmented cells are 

represented in pink and overlaid on the GFP signal. Time steps is 10 minutes. Movie duration is 800 

minutes. 
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